Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila
نویسندگان
چکیده
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA-negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis.
منابع مشابه
Distinct subsets of Eve pericardial cells stabilise cardiac outflow and contribute to Hox-triggered heart morphogenesis in Drosophila
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive ‘working myocytes’ and Svpexpressing ostial cells. However, developmen...
متن کاملCellular components and signals required for the cardiac outflow tract assembly in Drosophila.
Specification of cardiac primordia and formation of the Drosophila heart tube is highly reminiscent of the early steps of vertebrate heart development. We previously reported that the final morphogenesis of the Drosophila heart involves a group of nonmesodermal cells called heart-anchoring cells and a pair of derived from the pharyngeal mesoderm cardiac outflow muscles. Like the vertebrate card...
متن کاملEpithelial Properties of the Second Heart Field.
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal def...
متن کاملThe Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis.
In mouse, the LIM-homeodomain transcription factor Islet1 (Isl1) has been shown to demarcate a separate cardiac cell population that is essential for the formation of the right ventricle and the outflow tract of the heart. Whether Isl1 plays a crucial role in the early regulatory network of transcription factors that establishes a cardiac fate in mesodermal cells has not been fully resolved. We...
متن کاملHox genes define distinct progenitor sub-domains within the second heart field.
Much of the heart, including the atria, right ventricle and outflow tract (OFT) is derived from a progenitor cell population termed the second heart field (SHF) that contributes progressively to the embryonic heart during cardiac looping. Several studies have revealed anterior-posterior patterning of the SHF, since the anterior region (anterior heart field) contributes to right ventricular and ...
متن کامل